3.1.57 \(\int x \sqrt {\pi +c^2 \pi x^2} (a+b \sinh ^{-1}(c x)) \, dx\) [57]

Optimal. Leaf size=61 \[ -\frac {b \sqrt {\pi } x}{3 c}-\frac {1}{9} b c \sqrt {\pi } x^3+\frac {\left (\pi +c^2 \pi x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2 \pi } \]

[Out]

1/3*(Pi*c^2*x^2+Pi)^(3/2)*(a+b*arcsinh(c*x))/c^2/Pi-1/3*b*x*Pi^(1/2)/c-1/9*b*c*x^3*Pi^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {5798} \begin {gather*} \frac {\left (\pi c^2 x^2+\pi \right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{3 \pi c^2}-\frac {1}{9} \sqrt {\pi } b c x^3-\frac {\sqrt {\pi } b x}{3 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

-1/3*(b*Sqrt[Pi]*x)/c - (b*c*Sqrt[Pi]*x^3)/9 + ((Pi + c^2*Pi*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/(3*c^2*Pi)

Rule 5798

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcSinh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)
^p], Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e
, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int x \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx &=\frac {\left (\pi +c^2 \pi x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2 \pi }-\frac {\left (b \sqrt {\pi +c^2 \pi x^2}\right ) \int \left (1+c^2 x^2\right ) \, dx}{3 c \sqrt {1+c^2 x^2}}\\ &=-\frac {b x \sqrt {\pi +c^2 \pi x^2}}{3 c \sqrt {1+c^2 x^2}}-\frac {b c x^3 \sqrt {\pi +c^2 \pi x^2}}{9 \sqrt {1+c^2 x^2}}+\frac {\left (\pi +c^2 \pi x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2 \pi }\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 63, normalized size = 1.03 \begin {gather*} \frac {\sqrt {\pi } \left (3 a \left (1+c^2 x^2\right )^{3/2}-b c x \left (3+c^2 x^2\right )+3 b \left (1+c^2 x^2\right )^{3/2} \sinh ^{-1}(c x)\right )}{9 c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

(Sqrt[Pi]*(3*a*(1 + c^2*x^2)^(3/2) - b*c*x*(3 + c^2*x^2) + 3*b*(1 + c^2*x^2)^(3/2)*ArcSinh[c*x]))/(9*c^2)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int x \left (a +b \arcsinh \left (c x \right )\right ) \sqrt {\pi \,c^{2} x^{2}+\pi }\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsinh(c*x))*(Pi*c^2*x^2+Pi)^(1/2),x)

[Out]

int(x*(a+b*arcsinh(c*x))*(Pi*c^2*x^2+Pi)^(1/2),x)

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 73, normalized size = 1.20 \begin {gather*} \frac {{\left (\pi + \pi c^{2} x^{2}\right )}^{\frac {3}{2}} b \operatorname {arsinh}\left (c x\right )}{3 \, \pi c^{2}} - \frac {{\left (\pi ^{\frac {3}{2}} c^{2} x^{3} + 3 \, \pi ^{\frac {3}{2}} x\right )} b}{9 \, \pi c} + \frac {{\left (\pi + \pi c^{2} x^{2}\right )}^{\frac {3}{2}} a}{3 \, \pi c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2),x, algorithm="maxima")

[Out]

1/3*(pi + pi*c^2*x^2)^(3/2)*b*arcsinh(c*x)/(pi*c^2) - 1/9*(pi^(3/2)*c^2*x^3 + 3*pi^(3/2)*x)*b/(pi*c) + 1/3*(pi
 + pi*c^2*x^2)^(3/2)*a/(pi*c^2)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 127 vs. \(2 (49) = 98\).
time = 0.38, size = 127, normalized size = 2.08 \begin {gather*} \frac {3 \, \sqrt {\pi + \pi c^{2} x^{2}} {\left (b c^{4} x^{4} + 2 \, b c^{2} x^{2} + b\right )} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right ) + \sqrt {\pi + \pi c^{2} x^{2}} {\left (3 \, a c^{4} x^{4} + 6 \, a c^{2} x^{2} - {\left (b c^{3} x^{3} + 3 \, b c x\right )} \sqrt {c^{2} x^{2} + 1} + 3 \, a\right )}}{9 \, {\left (c^{4} x^{2} + c^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2),x, algorithm="fricas")

[Out]

1/9*(3*sqrt(pi + pi*c^2*x^2)*(b*c^4*x^4 + 2*b*c^2*x^2 + b)*log(c*x + sqrt(c^2*x^2 + 1)) + sqrt(pi + pi*c^2*x^2
)*(3*a*c^4*x^4 + 6*a*c^2*x^2 - (b*c^3*x^3 + 3*b*c*x)*sqrt(c^2*x^2 + 1) + 3*a))/(c^4*x^2 + c^2)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 141 vs. \(2 (53) = 106\).
time = 0.30, size = 141, normalized size = 2.31 \begin {gather*} \begin {cases} \frac {\sqrt {\pi } a x^{2} \sqrt {c^{2} x^{2} + 1}}{3} + \frac {\sqrt {\pi } a \sqrt {c^{2} x^{2} + 1}}{3 c^{2}} - \frac {\sqrt {\pi } b c x^{3}}{9} + \frac {\sqrt {\pi } b x^{2} \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}}{3} - \frac {\sqrt {\pi } b x}{3 c} + \frac {\sqrt {\pi } b \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}}{3 c^{2}} & \text {for}\: c \neq 0 \\\frac {\sqrt {\pi } a x^{2}}{2} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asinh(c*x))*(pi*c**2*x**2+pi)**(1/2),x)

[Out]

Piecewise((sqrt(pi)*a*x**2*sqrt(c**2*x**2 + 1)/3 + sqrt(pi)*a*sqrt(c**2*x**2 + 1)/(3*c**2) - sqrt(pi)*b*c*x**3
/9 + sqrt(pi)*b*x**2*sqrt(c**2*x**2 + 1)*asinh(c*x)/3 - sqrt(pi)*b*x/(3*c) + sqrt(pi)*b*sqrt(c**2*x**2 + 1)*as
inh(c*x)/(3*c**2), Ne(c, 0)), (sqrt(pi)*a*x**2/2, True))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int x\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {\Pi \,c^2\,x^2+\Pi } \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(1/2),x)

[Out]

int(x*(a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(1/2), x)

________________________________________________________________________________________